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Abstract

This paper describes the Intel Touchstone

Gamma Prototype, a distributed memory MIMD

parallel computer based on the new Intel i860 float-

ing point processor. With 128 nodes, this system

has a theoretical peak performance of over seven

GFLOPS. This paper presents some initial perfor-

mance results on this system, including results for

individual node computation, message passing and

complete applications using multiple nodes. The

highest rate achieved on a multiprocessor Fortran

application program is 844 MFLOPS.

Overview of the Touchstone Gamma System

In spring of 1989 DARPA and Intel Scien-

tific Computers announced the Touchstone project.

This project calls for the development of a series of

prototype machines by Intel Scientific Computers,

based on hardware and software technologies being

developed by Intel in collaboration with research

teams at CalTech, MIT, UC Berkeley, Princeton,

and the University of Illinois. The eventual goal of

this project is the Sigma prototype, a 150 GFLOPS

peak parailel supercomputer, with 2000 processing

nodes. One of the milestones towards the Sigma

prototype is the Gamma prototype. At the end of

December 1989, the Numerical Aerodynamic Sim-

ulation (NAS) Systems Division at NASA Ames

Research Center took delivery of one of the first

two Touchstone Gamma systems, and it became

available for testing in January 1990.

The Touchstone Gamma system is based on the

new 64 bit i860 microprocessor by Intel [4]. The

i860 has over 1 million transistors and runs at 40

MHz (the initial Touchstone Gamma systems were

delivered with 33 MHz processors, but these have

since been upgraded to 40 MHz). The theoretical

peak speed is 80 MFLOPS in 32 bit floating point

and 60 MFLOPS for 64 bit floating point opera-

tions. The i860 features 32 integer address regis-

ters, with 32 bits each, and 16 floating point regis-

ters with 64 bits each (or 32 floating point registers

with 32 bits each). It also features an 8 kilobyte on-
chip data cache and a 4 kilobyte instruction cache.

There is a 128 bit data path between cache and reg-

isters. There is a 64 bit data path between main

memory and registers.

The i860 has a number of advanced features to fa-

cilitate high execution rates. First of all, a number

of important operations, including floating point

add, multiply and fetch from main memory, are

pipelined operations. This means that they are

segmented into three stages, and in most cases a

new operation can be initiated every 25 nanosec-
ond clock period. Another advanced feature is the

fact that multiple instructions can be executed in a

single clock period. For example, a memory fetch,

a floating add and a floating multiply can all be

initiated in a single clock period.

A single node of the Touchstone Gamma system

consists of the i860, 8 megabytes (MB) of dynamic

random access memory, and hardware for commu-

nication to other nodes. The Touchstone Gamma

system at NASA Ames consists of 128 computa-

tional nodes. The theoretical peak performance of

this system is thus approximately 7.5 GFLOPS on
64 bit data.

The 128 nodes are arranged in a seven dimen-

sional hypercube using the direct connect ro_ting
module and the hypercube interconnect technol-

ogy of the iPSC/2. The point to point aggregate

bandwidth of the interconnect system, which is 2.8

MB/sec per channel, is the same as on the iPSC/2.

However the latency for the message passing is re-

duced from about 350 microseconds to about 90

microseconds. This reduction is mainly obtained

through the increased speed of the i860 on the

Touchstone Gamma machine, when compared to



theIntel386/387 on the iPSC/2. The improved la-

tency isthus mainly a product offasterexecution

of the message passingsoftwareon the i860.

Attached to the 128 computational nodes ofthe

NASA Ames system are ten I/O nodes, each of

which can storeapproximately 700 MB. The to-

tal capacity of the I/O system is thus about 7

GB. These I/O nodes operateconcurrentlyforhigh

throughput r_tes. The complete system is con-

trolledby a system resourcemodule (SRM), which

is based on an Intel80386 processor. This sys-

tem handles compilationand linkingofsourcepro-

grams, as wellas loadingthe executablecode into

the hypercube nodes and initiatingexecution.At

presentthe SRM isa seriousbottleneckin the sys-

tem, due to its slowness in compiling and link-

ing user codes. For example, the compilationofa

moderate-sizedapplicationprogram oftenrequires

30 minutes or more, even with no optimizationop-

tionsand no other userson the system.

The software environment of the Touchstone

Gamma system issimilarto that of the iPSC/2.

The SRM runs Unix System V/386 and features the

usual networking facilities including support for the
Network File System. Also available is remote host

software that allows a user to use the system trans-

parently from a workstation, although the compila-

tions and other operations are actually performed

on the SRM. The individual nodes run a simplified

Unix-like kernel. Fortran-77 and C compilers, as

well as an assembler and linker, are provided on

the SRM. The system supports standard message

passing commands for control of multiple processor
execution.

Single Node Performance

The Fortran compiler (produced by Green Hills)
that is provided on the initial Touchstone Gamma

system is the pre-production release 3.2. Although

it has some scalar optimization options, it does

not yet take advantage of advanced features of the

i860 such as the pipelining of floating point op-

erations and the utilization of multiple functional

units.As a result,singlenode Fortranperformance

isnot outstandingat the presenttime. However,

itis clearthat improved performance can be ex-

pected in the futureas more advanced compilers

are made available.This compiler development is

stimulatedinpartby thepotentialusage ofthei860

Program

MXM

CFFT2D

CHOLSKY

BTRIX

GMTRY

EMIT

VPENTA

Error

3.43E-15

1.26E-13

2.90E-12

5.53E-13

8.63E-14

1.48E-16

1.19E-14

Time

3.106

4.029

1.737

10.889

138.550

7.909

0.550

MFLOPS

1.35

1.24

0.64

1.48

0.82

2.86

1.18

,.TOTAL 3.68E-12 166.770 0.98

Table I: SingleNode NAS Kernel Performance

inhigh performance workstationsand in othersys-

tems that areunrelatedto the Touchstone project.

Some resultsof tests using the NAS Kernel

Benchmark Program are shown in Table 1. This

benchmark assessesthe performance of a computer

on seven subroutinesthat are typicalof computa-

tionalfluiddynamics computations done at NASA

Ames [2]. The overall single node performance fig-

ure of 0.98 MFLOPS (64 bit), which is only about

1.6% of the theoretical peak performance of the

i860 on 64 bit data, indicates there is considerable

room for improvement in the compiler's effective-

ness on this benchmark. These figures were ob-

tained by compiling with no optimization. When

compiled with all optimizations enabled (-OLM),

the first three figures increased to 5.39 MFLOPS,

3.77 MFLOPS, and 1.71 MFLOPS, respectively,

but the remaining tests did not complete, most

likely due to a bug in the compiler. By compar-

ison, the overall single node performance figure on
the Cray Y-MP for this benchmark is 97 MFLOPS

with no tuning and 160 MFLOPS with minor tun-
ing.

Performance results for some simple Fortran

loops (see Table 2) on a single node of the Touch-

stone Gamma system are shown in Table 3. "For

comparison, performance figures are shown on

these same loops for several other systems as well.

The Silicon Graphics (SGI) 4D-25 system included

in the list employs the MIPS R3000 processor.

Additional insight into single node performance

is provided by results for two simplified applica-
tion programs, which are shown in Table 4. The

first program (RELAX) performs a four color cell

relaxation scheme for the solution of the Cauchy.



Loop No. Operation

I

2

3

4

5

6

7

8

9

ai = ctbi

al = bici

ai = a(bi + c_)

a_ = bi(c_ + d_)
al = abi + _cl

ai = otbi + cidl

al = bicl + dlel

ai = abi +/3ci + 7di

al = otbl +/3cl + 7dl + 6ei

Table 2: Basic Operations

Vector Touch-

length stone

64 3.5

128 3.6

256 3.8

512 3.9

Average 3.7
Best 7.7

Worst 0.9

SGI Cray
4D-25 2

0.8 86.3

0.8 91.0

0.8 97.7

0.8 112.9

0.8 97.0

1.4 209.9

0.5 38.3

Cray
Y-MP

187.4

187.4

197.1

199.5

192.8

247.8

102.5

Table 3: Basic Operations Performance on a Single

ProcessorofVarious Systems (MFLOPS)

D omain

size

64 x 64 6.4

128 x 128 6.4

256 x 256 5.9

64 × 64 3.4

128 × 128 3.1

256 × 256 2.2

Touch- SGI Cray Cray

stone 4D-25 2 Y-MP

RELAX

2.6 109.6 177.6

2.5 112.9 190.1

2.5 115.2 190.6

ADI

2.0 85.6 130.8

1.9 88.9 135.2

1.4 95.2 136.5

Table 4: Performance of Two

cessor of Various Systems
Codes on SinglePro-

Riemann equations. The second program ('ADI)
performs the ADI scheme for the solution of the

diffusion equation. Results are listed for compar-

ison on several different single processor systems.
All of these results are for 64 bit data.

Some indication of the potential for single node

performance is given by the results of the LIN-

PACK benchmark. Using all Fortran, 40 MHz i860

nodes, and no optimization, the performance is 2.6

MFLOPS for 64 bit data. With all three opti-

mization options enabled (-OLM) this figure rises

to 4.5 MFLOPS. Corresponding figures for 32bit

data are 2.7 MFLOPS and 5.3 MFLOPS, respec-
tively. When an assembly coded DAXPY routine

is employed in the inner loop, 8.8 MFLOPS is ob-

tained on 64 bit data. Somewhat higher perfor-

mance couldbe expectedby utilizingassembly code

forother routines,such as ISAMAX.

The effectofthe cache sizeand the limitedband-

width between the i860 and main memory can be

seenby some resultsofa doubleprecisiondot prod-

uct coded threedifferentways, as shown in Figure

1. The top two curves are assembly coded where

one vectorisloaded from cache and the otherfrom

main memory. Curve three isalsoassembly coded

but bypasses cache and loads both vectorsfrom

main memory. The fourthcurve isa Fortran coded

dot product compiled with fulloptimization.

When one vectorisloaded from cache (i.e.the

top two curves),the dot product peaks at about 27

MFLOPS. As the vectorlengthexceeds the cache

size(8 KB = 1000 words), performance drops off

dramatically.With a strideof two,only haLfofthe

data in cache is usable and so performance drops

offwhen the vectorlength exceeds512 words. The

Fortrancoded dot product alsoshows the effectof

cache and peaks at 8.7 MFLOPS.

Curve three isthe assembly coded versionthat

bypasses cache. It remains flat after an initial

startupand runs about 13 MFLOPS independent

ofvectorlength.In fact,itisthe fastestdot prod-

uct forvectorslongerthan 1500.

From the above results,itisclearthatwhile the

singlenode Fortran performance ofthe Touchstone

Gamma system ismuch higher than on previous

Intelhypercube systems,itstilllagsfarbehind the

ultimate potentialof the i860 system. Certainly

thereismuch work tobe done on the Fortrancom-

pilerto enableitto effectivelyutilizethe advanced



features of the i860. The LINPACK benchmark re-

sults, for example, suggest that speedups of a factor

of two or three should be possible by fairly straight-
forward compiler enhancements.

However, even when these compiler enhance-

ments have been implemented, the limited main

memory bandwidth and cache structure of the in-

dividual nodes will continue to pose a challenge

for those wishing to approach peak performance on

i860 systems. For example, the 8.8 MFLOPS fig-

ure for the 64 bit LINPACK benchmark using an

assembly-coded DAXPY is still only about 15% of

the peak. To obtain significantly higher results on

a given L_ ulation, it will be necessary to improve

data locality by better utilizing the registers and

cache and by minimizing accesses of data in main

memory.

It is possible that compiler technology will even-

tually be sophisticated enough to automatically

block calculations so as to maximize data locality

and thus boost the performance of some loops on

systems such as the i860. Indeed, some research

groups are now working on such compiler technol-

ogy. In the near future, however, the only practical

way for users of i860 systems to obtain large frac-
tions of the peak performance will be to restructure

computations with algorithms that better preserve

data locality. For many applications, it may not be

possible to restructure computations in this man-

ner. In these cases at most 10 MFLOPS or so can

be expected on a single node.

An example of the potential for higher perfor-

mance to be had by restructuring a calculation for

improved data locality is indicated by some work in

progress at NASA Ames by one of the authors (Bai-

ley) and Paul Frederickson of RIACS. They are de-
veloping a high-performance fast Fourier transform

(FFT) routine for the Touchstone Gamma system.

In some initial i860 FFT efforts by others, per-
formance rates as high as 40 MFLOPS have been

obtained for an tmordered (bit reversed), 32 bit,

small-sized FFT, but the rate for data sizes larger
than the cache drops to only about 10 MFLOPS.

The rates for ordered results or for 64 bit data

are even lower. Although the NASA Ames work

is at present incomplete, preliminary results indi-

cate that by employing an advanced FFT algorithm

that preserves data locality [1], performance rates

of approximately 40 MFLOPS can be sustained on

Length Distance = 1 Distance = 7

Length Time

(words) (sec)
1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

Time Rate

(sec) (MB/s)
9.00E-5 0.089

9.00E-5 0.178

9.00E-5 0.356

1.00E-4 0.640

2.30E-4 0.557

2.80E-4 0.914

3.90E-4 1.313

5.50E-4 1.862

9.40E-4 2.179

1.67E-3 2.453

3.13E-3 2.617

6.05E-3 2.708

1.19E-2 2.751

2.36E-2 2.776

4.70E-2 2.788

9.38E-2 2.794

1.88E-1 2.797

3.75E-1 2.798

3.30E-4

3.30E-4

3.30E-4

3.30E-4

4.60E-4

4.60E-4

5.80E-4

7.80E-4

1.16E-3

1.88E-3

3.33E-3

6.26E-3

1.21E-2

2.38E-2

4.72E-2

9.41E-2

1.88E-I

3.75E-1

Rate

(MB/s)
0.024

0.048

0.097

0.194

0.278

0.557

0.883

1.313

1.766

2.179

2.460

2.617

2.704

2.750

2.775

2.787

2.794

2.797

Table 5: Communication Performance

an ordered 64 bit FFT of any size up to the 8 MB

main memory capacity. It is hoped that about

three GFLOPS can be obtained by using all 128
processors.

Communication System Performance

As mentioned earlier, the routing network of the

Touchstone Gamma system is identical to the rout-

ing network of the Intel iPSC/2. The main differ-

ence between the two machines is the lower latency

in the Touchstone Gamma system, due to the faster
i860 processor.

To measure the communications latency of this

system, the time for passing a message between

two nodes has been measured for various message
lengths. In these experiments, no other communi-

cations or computations were performed. The re-

stilting figures are given in Table 5. In this table,

the message length is the number of eight byte (64

bit) words, and the rate is listed in megabytes per
second.

The times in the table are averages over one hun-

dred repetitions. Figures 2 and 3 show this infor-



Computer
System
iPSC/2

Touchstone

Length

(bytes)

< 100

> 100

< 100

> 100

Latency

(p sec)

350

660

90

180

Time/word

sec)
1.60

2.88

1.50

2.88

Table 6: Linear Regression Messing Passing Pa-
rameters

mation graphically.These resultsshow thateven in

a 128 node cube thereisverylittledifferenceinthe

actualmessage passingtime between nearestneigh-

bor and maximum distancecommunication in the

hypercube.

Figure4 shows a closeup of the communication

timesfor shortmessages. Just likeon the iPSC/2,

messages of length lessthan 100 bytes are sent

immediately,whereas for longermessages (> 100

bytes)the node operating system firstchecks for

the availabilityofmemory at the receivingend.

Following Bomans and Roose [3] we model the

communication time Tcomm by a least squares fit of

the data according to the model

Tc m(k) = t.t.,e,,p + k •

where k is the number of 8 byte words, teta, tup is the

latency and t,e,u/is the time per word. We obtain

the data in Table 6 (the iPSC/2 numbers are from

[3]). Thus we are able to confirm a considerably

reduced message passing latency, which is obtained

mainly from the increased speed of the i860 on the

T:_uchstone Gamma system, when compared to the

Intel 386/387 on the iPSC/2.

The message passing behavior on a real appli-

cation is considerably more difficult to assess. As

an example we present the test results in Table 7,

which were obtained when timing two neighboring

nodes (distance= 1) exchanging messages. The

numbers in thistableare displayedgraphicallyin

Figure 5. After an initialincreasein communica-

tionspeed the speed drops offagain. This can be

explainedas follows:as soon as the messages reach

a certainlength,both nodes startreceivingthe in-

coming message, even though they have not yet

completed sending the outgoing message. Hence,

as soon as both nodes startingprocessingtwo coln-

Length

(8B wds)

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

Time

(sec)
1.40E-4

1.40E-4

1.40E-4

1.50E-4

3.40E-4

3.20E-4

5.10E-4

6.30E-4

1.47E-3

1.74E-3

3.20E-3

6.14E-3

1.69E-2

4.36E-2

8.93E-2

1.56E-1

3.52E-1

6.67E-1

Rate

(MS/s)

0.057

0.114

0.229

0.427

0.376

0.800

1.004

1.625

1.393

2.354

2.560

2.668

1.937

1.502

1.468

1.683

1.488

1.572

Table 7: Neighboring
formance

Node Message Passing Per-

munication requestssimultaneously,the communi-

cationspeed begins to drop off.

Multiprocessor Application Performance

In this section, we will discuss and analyze the

performance of two computational fluid dynamics

(CFD) application programs that have been ported

to the Touchstone Gamma system at NASA Ames.

The first application is an iterative solution of

linear systems arising from the finite difference dis-

cretization of a 2-D and 3-D self-adjoint elliptic

partial differential equations on regular grids. This
problem can be cast into the matrix-vector form

Az = b, where the regular sparse, symmetric,-posi-

tire definite matrix A takes the place of the differ-
ential operator.

The implementation of this problem on the

Touchstone Gamma system consists of decompos-

ing the tensor product computational domain into

logically congruent rectangles and mapping these

subdomains onto the network of processors. The

mappings are chosen so that subdomains sharing

common edges are assigned to processors that are



directly connectedin the hypercube network. This

requires, for stripwise decompositions, a binary re-

flected Gray code (BRGC) ring and for rectangu-
lax decompositions, a BRGC 2-D mesh embedded

in a hypercube. Decomposition in this manner re-

suits in homogeneous programming of the proces-

sors, equidistribution of the load, minimization of

the distance traveled by messages and simplified

col tunication patterns for data exchange between

processors.

Two essentially different types of data exchanges

are required when these concurrent algorithms are

implemented via domain decomposition. For five

and nine point second order finite difference sten-

cils, stripwise decomposition requires two vector

exchanges of internal boundary data per proces-

sor per iteration and rectangular decomposition re-

quires four such exchanges. In addition to these

pairwise exchanges between processors working on

adjacent subdomains, global exchanges are re-

quired for reduction operations such as inner prod-

ucts and mRYimllm.q. These globalcommunication

operationsare implemented via callstoa highlevel

system libraryprovided by Intel[5].Routines in

thislibraryimplement reductionoperationsusing

the e-cube routingalgorithm,which requiresonly

logSp concurrentnearestneighbor communication

steps,at the end ofwhich allthe processorsbelong-

ing to the activesubcube have the requiredglobal
value.

The Jacobi preconditioned conjugate gradient

method, multicolorSOR and SSOR preconditioned

conjugategradientmethod for 2-D self-adjointel-

lipticPDE's have been implemented on the 128

processor Touchstone Gamma system. These

implementations are entirelyin Fortran, using

the standard message passing and synchronization

commands. Results of these implementations are

presentedin Figure6 and Tables8 and 9. The lines

with percentagesgiveparallelefficiencies,i.e.the

ratioof mnltiprocessorperformance to the single

node performance.

One especiallycuriousaspectofthisperformance

data is that in some cases,the parallele_ciency

figureisgreaterthan 100%. This isdue to the fact

thatwhen a problem offixedsizeisdividedamong

processors,the memory sizein each processoris

reduced,resultingin increasedcache e_ciency.

The 2-D model problem chosen is the Poisson

Problem

Size

512 × 512

1024 × 1024

2048 × 2048

4096 × 4096

8192 × 4096

1

4.5

Number ofProcessors

4 16] 64] 128
20.8 76.3 237.8 362.4

117%107% 83% 63%
17.7 80.2 299.1 524.2

99% 112% 105% 92%

69.6 320.4 628.5

97% 112% 110%

277.8 650.8

97% 114%

554.7

97%

Table 8: 2-D Red-Black SOR (MFLOPS)

equation:

02u cg_u

0z---_ + 0y 2 - /(z, y)

on a unit square with homogeneous Dirichlet

boundary conditions, where f(z,y) is chosen so

that the exact solutionis u(z, y) = c=z2 + %y2.
The initialiterateisu - 0 and an absolute con-

vergence toleranceof 10-s on the L_-norm of the

scaledresidualisused. A fivepoint second order

accuratefinitedifferencestencilisused forthe dis-

cretizationofthe PDE.

Resultsfor a 2-D model with mixed derivatives

are presentedin Table 10. The mixed derivative

problem is

¢92u c_2u 02u

This problem requires a nine point stencil for sec-

ond order accurate finite difference discretization.

In addition, performance data is presented in Ta-

ble 11 for the solution of 3-D Poisson equation using

Jacohi preconditioned conjugate gradient method.

The efficient implementation of iterative meth-

ods on message passing machines requires that the

effects of communication delays be _zed. One

way of achieving this is to restructure algorithms in

such a way so as to overlap communication with

computation. This is effected by first updating
the u values along the boundaries of the subdo-

mains and then using non-blocking message pass-

hag primitives to exchange data between adjacent



Problem

Size

256 x 256

512 x 512

1024 x 1024

2048 x 2048

4096 x 2048

1

5.4

Number of

4 16 1
21.2

97%

21.3

98%

Processors

64 I 128
64.1 138.6 180.0

73% 40% 26%

79.9 245.8 365.2

92% 71% 52%

83.0 312.3 548.3

95% 90% 79%

329.5 652.5

95% 94%

658.5

94%

Table 9: 2-D SSOR PCG (MFLOPS)

Problem

Size

256 x 256

512 x 512

1024 x 1024

2048 x 2048

2048 x 4096

1

6.7

Number of Processors

4 16 I 64[ 128
26.3 92.3 I 228.9 294.1

98% 86% 53% 34%

26.7 104.4 348.8 577.0

99% 97% 81% 67%

106.0 412.0 774.8

98% 96% 90%
423.0 832.5

98% 97%

844.0

98%

Table 10: 2-D Jacobi PCG with Mixed Derivatives

(MFLOPS)

Problem

Size

48 x 48 x 48

96 x 96 x 96

192 x 192 x 192

192 x 192 x 384

Number of Processors

1[ 8 64 I 128
5.3 37.2 186.5 252.4

88% 55% 37%

41.0 276.6 481.2

97% 82% 71%
316.2 588.9

93% 87%

633.9

97%

Table Ii: 3-D Jacobi PCG (MFLOPS)

subdomains before returning to continue with com-

putation in the interior of the subdomains. Com-

putations requiring the internal boundary values

received from adjacent subdomains are delayed un-
til all internal nodes are dealt with.

The second muitiprocessor application to be dis-

cussed is the NASA Ames code ARC2D. This ver-

sion of ARC2D solves 2-D Euler equations based on

the diagonal form of the Beam and Warming im-

plicit approximate factorization algorithm [6] and is
capable of treating general 2-D geometries in either

time accurate mode or accelerated non-time accu-

rate steady state mode. Implicit time integration

techniques impose less stringent stability bounds

and consequently permit efficient solution of prac-

tical fluid dynamics applications that require fine

grid spacing. However, implicit schemes require

global communication, and thus the performance
suffers from increased data movement.

The 2-D Euier equations written in generalized
curvilinear coordinates are:

OQ OE OF

= o
where

Q = j-1

E -- j-1

F = j-1

pu

pv
e

pU

puU + Gp

pt,U +
U(e+ p) - 6a,

pV

puV + rl=p

p_V + rl_p

V(e + p) - ,7,p

with U = f_ + _=u + _uv and V = rlt + rl=u + %v as

the contravariant velocity components and Where

r = t, _ = _(z,y,t), r/ = 17(z ,y,t) is the trans-

formation from cartesian coordinates (z, y) to gen-

eral curvilinear coordinates (_, _/). This numeri-

caUy generated coordinate transformation is chosen

so as to produce a rectangular domain in compu-

tational space with uniform grid spacing of unit

length. Here, p is the fluid density, u, v are the

cartesian components of velocity, e and p are the

total energy and pressure, respectively.



Although time differencingcan be eitherfirstor

second order accurate,only the former isrequired

ifsteady statesolutionsare of interest.The first

orderaccurateimplicittime differencingofthe 2-D

Euler equationsresultsin

OE_+I OF_+I

Q,_+Z_Q,_+At( _ + 0----_) = 0

where the flux vectors E and F are nonlinear func-

tions of Qn+Z. The nonlinear terms are linearized

in time about Qn using the first two terms of the

Taylor series:

E'_+ 1 = E n + A_AQ _ + O(At 2)

F "+1 = F"+B"AQ _+O(At 2)

where A = cgE/OQ and B = cgF/cgQ.

Substituting these expressions in the previous
equation, we obtain the delta form of the unfac-

tored algorithm:

At OB_ ]
[I+ Ate+ OrljAO"

fOE- OF"]Lot

To simplify the solution process, the un£actored Ja-

cobian matrix is replaced by two one-dimensional

operators through approximate factorization:

[0E" aF"]---AtL at +O_"_

To furtherimprove the computational efficiency

ofthe numericalscheme, the two block implicitop-

eratorsare diagonalized,based on the eigensytem

ofthe fluxJacobiansA and B, through the follow-

ing similaritytransformationsA_ = T_'IAT_ and

A,7: T_IBT, Iwhere T_ and T,_arematriceswhose

columns are the eigenvectorsof A and B respec-

tively.SubstitutingforA and B in the above,fol-

lowed by some simplification,we get

T_[I + At6eA_]N[I ÷ AtS.A_]T_ zAQ'_+ 1

.-- Rn

where = + 6.F"]andiV= TilT
The diagonalizationproduces scalartridiagonal

or pentadiagonal and block diagonal inversionsin

place of block tridiagonalor pentadiagonal inver-

sions,without sacrificingthe accuracy ofthe steady
statesolution.

In order to overcome the numerical instability

due to nonlinearinteractions,artificialdissipation

terms are added to the implicitscheme [6].The
righthand sidevectorR '_consistsofthe contribu-

tionsfrom the nonlinearfluxderivativesin _ and

77directionsand the artificialdissipationterms,all

ofwhich are evaluatedusing secondorder accurate

centraldifferences.The discretizedequationsinthe

interiorof the computational domain are supple-

mented by boundary conditionsderivedfrom the

characteristicapproach, which are appliedexplic-
itly.

In summary, the diagonal form of the implicit

factoredalgorithmconsistsoffirstforming the right

hand sideR '_,then performing a block diagonalin-

versioninvolvingTe, followedby four scalarpen-

tadiagonalinversionsfor t directionsweep. This is

followedby anotherblock diagonalinversioninvolv-

ing N, four scalar pentadiagonal inversionsfor _7

direction sweep and a block diagonal matrix-vector

product involving T,7, with resultant vector contain-

ing the solution update.

The concurrent implementation of the ARC2D

algorithm is achieved by stripwise decomposition
of the rectangtdar computational domain in the

direction, followed by mapping of the resultant

subdomains onto a BRGC ring embedded in the

hypercube. As a consequence of this particular

subdomain to processor mapping, each of the mul-

tiple, independent pentadiagonal system encoun-

tered during the t direction sweeps is local to the in-

dividual processors, and is amenable to solution by

Gaussian elimination without pivoting, with no in-

terprocessor communication. The rows of the pen-

tadiagonal systems encountered during the _/direc-

tion sweeps are distributed across the processors

embedded in the ring. A data transpose operation,

involving heavy interprocessor communication, is

performed prior to Gaussian elimination step to

gather complete systems onto individual proces-
sors.

The resultant solution vectors are scattered

across the processor ensemble through a reverse

transpose operation, again involving substantial in-

terprocessor communication. The block diagonal
inversions and matrix-vector product encountered



Problem

Size

192 x 64

256 x 80

320 x 128

1

2.9

Number of Processors

2 4 8 I 16 I 32
5.3 8.5 12.T 16.8

92% 74% 55% 36%

5.5 9.2 16.1 19.6

94% 79% 61% 42%

9.9 16.8 25.5 33.8

85% 72% 55% 36%

Table 12: ARC2D Performance (MFLOPS)

in the diagonal implicit factored algorithm are com-

puted without incurring any interprocessor com-

munication costs. Computation of the right hand

side vectors requires only pairwise exchanges be-

tween processors working on adjacent subdomains.

Global exchanges are required for computing the 2-

norm of the residual of the continuity equation and

the number of supersonic points in the flow field,

which are used to monitor convergence.

The performance of the resulting implementation

is summarized in Table 12. These results are not

nearly as high as the previous results, for two rea-

sons. First of all, the single node performance is

lower, due to inefficient compilation of the most im-

portant inner computational loops. Secondly, the

transpose step mentioned above is at present very
expensive in communication, with the result that

multiprocessor efficiencies are quite low. There is

at this time some hope that the communication effi-

ciency can be improved by restructuring the trans-

pose procedure. Improvements in single node per-
formance will have to await enhancements in the

Fortran compiler.

Conclusion

With the Intel Touchstone Gamma system,

multi-GFLOPS peak floating point performance is

now available on a MIMD hypercube computer sys-

tem. Initial performance results indicate that a sig-

nificant fraction of this peak performance may be

obtained on some specialized applications, partic-

ularly those that can be implemented with algo-

rithms and techniques that possessa high degree

ofdata locality.For the largerclassofapplications

that do not possess high degrees of data locality,

performance rateswillbe limitedby both the re-

strictedbandwidth between theprocessorand main

memory on the individualnodes and by the re-

strictedcommunication bandwidth between nodes.

For both classesof applications,performance rates

forthe time being are lower than idealdue to an

immature Fortran compiler. The usabilityof the

system for seriouscomputation is alsoat present

hampered by a slow front-endsystem (the SRM),

which resultsin tedious delaysfor compiling and

linkinguserprograms.

On the otherhand, such limitationsare typicalof

an earlyprototype system. Hopefullyfuturedevel-

opments, both hardware and software,willalleviate

some ofthesebottlenecksand permit broad classes

ofscientificcomputations to run at multi-GFLOPS

speeds.
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